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Abstract. AVIRIS data can be used to quantitativelyanalyze and map .sedimentary lithofacies.The

observed radiance spectracan be reduced to "apparent reflectance"spectra by topographic and

reflectancecharacterizationof severalfieldsiteswithin the image. These apparent reflectance

sp_tra correspond tothe true reflectanceateach pixel,multipliedby an unknown illuminationfactor

(ranging Invalue from zero to one). The spatialabundance patternsof spectraliydefined llthofacies

and the unknown illuminationfactorscan be simultaneously derived using constrained linearspectral

unmixing methods. Estimates of the minimum uncertainlyinthe finalresults(due tonoise,instrument

resolutions, degree of illumination and mixing systematics) can be made by forward and inverse

modeling. Specific facies studies in the Rattlesnake Hills region of Wyoming illustrate the successful

application of these methods.

I. Inlroductlon

This study illustrates how AVIR{S data can be used to study sedimentary facies. The problem

is cast in the form of a geophysical inversion process. A forward model, describing the relationship

between the observed radiance and the surficial composition, is developed and then inverted. The

inversion process, employing a modified linear spectral unmixing technique, permits quantitative

mapping and analyses of sedimentary lithofacies. However, a lower bound exists on the uncertainty
associated with such spectral unmlxing results. Noise in the data, the local degree of illumination,

finite spectral and radiomelric resolutions and the spectral mixing systematics of the particular

lithofacies being studied all combine to create some uncertainty in the unmixlng results. A method of

modeling and deriving this limiting uncertainty is illustrated here. This minimum uncertainty is in
general different for each spectrally-defined lithofacies being studied and different for each pixel

within the AVIRIS scene. Using geophysical inversion methods to analyze AVIRIS data permits

derivation of quantitative geological results, and equally important, estimation of the uncertainty in
these results.

The process outlined here demonstrates how AVIRIS data can be used, subsequent to initial

field work, to extend the results of thai field work over large areas. The process has several steps.

First, the observed AVIR1S radiance data are reduced to "apparent reflectance" (modeling true

reflectance multiplied by some unknown illumination factor between zero and one at each pixel). Then,
the spectral distribution of noise in the data is derived using a new method. Limited field work is

conducled to observe and to spectraily characterize the materials present on the surface, including the

lithofacies outcrops of interest and all other abundant surface materials. Then, a constrained linear

unmixing method is used to derive images of the spatial patterns of abundance of the various surface
materials. Next, iterations of simulated forward and inverse modeling of the spectral mixing are

performed to derive the minimum systematic uncertainty for each endmember at each individual pixel.

This last process creates "uncertainty images" corresponding to the "endmember abundance images"

derived by the foregoing spectral unmixing. Finally, sedimentary facies mapping and analyses are

performed using the abundance and uncertainty images.

II. Redttcfion of Radiance to Apparent Reflectance

The observed spectral radiance at the AVIRIS instrument can be modeled as the sum of two

terms, path radiance and reflected radiance. If a Lambertian model of the surface is used, diffuse
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irradiance is ignored and the atmosphere is assumed to be uniform, then the observed radiance can be
modeled as follows.

Lo(s,I,X) = Lp(_.) + (1/n)*Esun(X)*Ttw(_.)'IF(s,l)*R(s,l,X)

Sample, line and spectral channels are denoted by s, I and X respectively. Lo and Lp are the observed

and path radiance values, Esun is the solar irradiance spectrum, Ttw is the two-way atmospheric

transmission spectrum, IF ts the local illumination factor (cosine of the local solar incidence angle) and

R is the reflectance spectrum for the surface. Apparent reflectance is defined as IF*R. A pixel oriented

normal to the solar incidence direction will have an IF of 1.0, so the apparent reflectance and true

reflectance will be equal. A pixel receiving little irradiance, shaded by topography or turned away

from the sun, will have an IF of near zero and a very low apparent reflectance spectrum.

Five ground sites were spectrally characterized with a field spectrometer and the local slopes

and aspects were recorded to permit calculation of offset (Lp) and gain ((1/_)*Esun_Ttw) spectra for

reduction to apparent reflectance. Local IF values for these sites were calculated using the field

measurements in conjunction with the calculated azimuth and elevation of the sun at the time of

AVIRIS overflight (AZ=187.5, EL=37.0, timc_10/18/89 19:20 GMT). The observed reflectance,

calculated IF values and the 70 extracted AVIRIS radiance spectra (corresponding to the ground sites)

were used to solve, on a band-by-band basis, a system ofT0 linear equation in two unknowns. The

resulting path radiance (offset) and maximum reflected radiance (gain) spectra are shown in Figure 1.

The Lp offset spectrum shows the expected low level and the fall-off at longer wavelengths, associated
with atmospheric scaltenng. The (1/_)*Esun"ftw gain spectrum shows the combined effects of solar

irradiance and atmospheric absorption. The observed radiance spectra can now be reduced to apparent

reflectance by subtracting the Lp spectrum and dividing by the (1/n)*Esun*Ttw spectrum. Three typical

reduced spectra are shown in Figure 2.

Ill. Derivation of Noise Levels

The spectra shown in Figure 2 obviously are contaminated with considerable noise. A measure

of this noise is essential in any attempt to use these data quantitatively. An improved method for noise

derivation, more widely applicable than past methods, is outlined here. Past meihods have required a

large and spectrally uniform target, such as a playa or runway, for noise derivation. Such targets are
not found in most AVIRIS scenes. The method presented here allows for some natural variance in Ihe
area chosen for noise derivation. The observed variance is modeled as the sum of the natural and noise
variances.

The most nearly uniform large area of the scene is selected and the associated spectra are

extracted from the AVIRIS radiance data. The standard deviation of these pixels, band-by-band, is
calculated to form a "standard deviation spectrum". Then the spectra are averaged together in groups

of two and another slandard deviation spectrum is calculated. This process is repeated, averaging the
pixels in groups of 4, 5, 8, 10, 16, 20 and 25. For each band, nine standard deviations are calculated, each

corresponding to a different degree of spatial averaging. The noise level in a band can be estimated by
fitting a line to these calculated points after they are plotted versus the reciprocal of the square root of

the number of pixels averaged. Tim noise portion of the variance should drop predictably. The natural
variance should remain nearly constant until the spatial averaging crosses a natural "texture scale" of

the area being used. By examining the linearity of these plots, the validity of the underlying
assumptions can be assessed. Application to a typical AVIRIS band is shown in Figure 3.

The derived noise level represents an estimate of the standard deviation of the noise at each

spectral band, in terms of apparent reflectance. This spectrum is shown in Figure 4. Since the apparent
reflectance signal varies both spatially and spectrally, so does the signal-to-noise-ratio. Poorly

illuminated and/or low reflectance pixels have lower signal-to-noise ratios than fully illuminated
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and/or high •reflectance pixeis. Figur e 5 shows the mean signal-to-noise spectrum for the three AVIRI$
segments studied. The low signal-to-noise levels are a result of the low Signal levels, in tuna caused by
the low sun angle at the time of the mid-October acquisition. The derived noise level spectrum (Figure

4) plays a key role in modeling the uncertainty in the results of the spectral unmixing procedure.

IV. Modtfied Linear Spectral. Unmlxlng and Uncertainty Modeling

A modified linear spectral unmixing method is used to map the spatial distributions of, and
thus the stratigraphlc relationships among, the lithofacies being studied. Field spectral
measurements and laboratory measurements of field samples are used to form a mixing libraCy for the
specific region being studied. The AVIRIS apparent reflectance spectra are modeled as linear
combinations of these endmember spectra. A system of simultaneous equations can be developed at each
pixel and solved in a least-squares sense to estimate the abundance of:each endmember material within
each plxel.

• _. Several modifications are made to this least-squares procedure, compared to similar
applications previously reported by other workers (Adams and others,-1986; Gillespie and others,
1990). The apparent reflectance spectra, reduced.from the.observed AVIRIS radiance spectra, are
unmixed using absolute reflectance spectral endmembers'. The derived abundances.are constrained to be
non-negative 0nd to sum •to one or less, using the numerical methods descn'bed byLawson and Hanson
(1974). The effect of these two modifications is to allow a simultaneous derivation of estimates for the

unknown endmember abundances and the unknown local illumination factor, IF, at each individual

pixel. This method treats illumination and shadowing effects as an unknowngain factor, IF, rather
than Including shade as a mixing endmember as done by others (Gillespie and others, 1990). The gain
factor method ts numerically more stable since the shade endmember, by definition a very dark
spectrum, makes the mixing library more ill-conditioned (Menke,1984; Press and others, 1986) since it is

nearly linearly dependent with all spectra in the library and their linear combinations.

Noise, finite resolutions, variable illumination and the mixtng systemalics of:the particular r
library combine to limit the certainty in unmixlng results. Forward modeling, simulations of observed
data,.can be. used to derive this lower limit o_ uncertainty. The mixing library ts modified to match the
spectral and radlometric resolutions of the AVIR1S instrument. Then the spectra are mixed, in known _
proportions, and degraded by the addition o.f a proper noise spectrum. Unmixing of many of these
simulated spectra provides estimates of the minimum uncertainty for each endmember as a function of
abundance of every endmember and the degree of illumination.

V. Facies Study Example

An example study is illustrated here of the Cretaceous Frontier and Mowry Formations, which
crop oct in the.Rattlesnake Hills region of central Wyoming. :The Rattlesnake Hills area has been
previously mapped and studied, using conventional field methods.(Bogrett,1951; Pekare_ 1974); The
Mowry ._.rmation is a siliceous ridge-forming shale and. the Frontier:is a _htck sequeqce of inter.bedded
and discontinuous sandstone lind black shale facies1 A bentonite bed .also.OCCUrs near. the contact between

the .two f.o.rmations. This example illustrates how SPectral unmixing of AVIRIS data, applied, after.
initial, field..work; can successfully create detailed lithof_lcies maps for these elastic formations.

_.The first stepin the process is the spectral characterization of the common materials found on

the surface in the study area. The surface materials were divided into seven mixing endmembers, four
lithofaeies (Mowry shale,• Frontier sandstone, Frontier black shale and the bentonite unit) and three

unrelated but abundant surface materials (green vegetation, dry vegetation and soil A horizon). The
reflectance proPerties of these "pure" endmember materials were measured using a field spectrometer in
a laboratory_setting. Composite average spectra, con_,olved with the AVIRIS spectral bandpasses, are
shown in Figure 6. These seven spectra form the mixing library.



The spatial patterns of abundance of each of the seven endmembers were determined using
modified linear spectral unmixing. The AVIRIS data, reduced to apparent reflectance spectra, were
unmixed using the seven-member library of absolute reflectance spectra. The sum of the seven derived
abundances, each constrained to be positive, is an estimate of the local illumination factor, IF. At each
pixel the derived abundances were normalized by this sum to form abundance images relatively
uninfluenced by illumination variation. These normalized abundance images and the corresponding IF
image are shown in Figure 7. Also shown is the root-mean-square error image illustrating the goodness
of fit between the modeled and observed spectra. These nine images illustrate how the geologic
information in AVIRIS data can be extracted and quantified using spectral unmixing methods. The
stratigraphic relationships among the various lithofacies can be mapped and analyzed using these
results and an image processing workstation. Figure 8 shows the unmixing results for a single pixel found
to be rich in bentonite. This figure illustrates the advantage of using the full spectral range for curve-
fitting, as opposed to analysis of discrete spectral absorption features such as the clay band at 2.2 sxm.
The noise in the data prevents a direct visual identification of the spectral feature but the unmixing
method, using all but the 60 noisiest channels, was able to correctly identify the surface composition.

Minimum unmixing uncertainties in the unmixing results were modeled using the methods
outlined above. Figure 9 shows images of the uncertainties for the abundance images of Figure 7. Each
endmember has a unique sensitivity to noise and instrument resolutions in the context of the particular
mixing library. The black shale endmember, devoid of spectral features and low in albedo, has the
least distinct spectrum and accordingly the highest uncertainty. Conversely, the vegetation
endmembers, being more linearly independent, have the lowest uncertainties. For a single endmember,
the uncertainty varies spatially due to illumination variation and changes in abundance of the other
mixing endmembers.

VI. Conclusions

Geophysical inversion methods can be applied to AVIRIS data to quantitatively map and
analyze sedimentary lithofacies. The modified linear spectral unmixing approach, outlined here,
provides a numerically stable method for the simultaneous derivation of endmember abundance and
illumination patterns. Using forward modeling methods and an accurate noise level spectrum, the
minimum uncertainty for each endmember at each pixel can be determined. This application of
geophysical methods to AVIRIS data analysis illustrates the usefulness of the data. Even in the

presence of significant noise, lithofacies information and associated uncertainties can be derived.
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Figure 7. Endmember abundance images.
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Figure 9. Minimum uncertainty images corresponding to Figure 7.
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